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Propagation and Trapping of Excitations 
on Percolation Clusters 

I t z h a k  W e b m a n  i 

A study is presented of migration of optical or magnetic excitations on 
percolation clusters which terminates upon reaching a trapping site. The theory 
is based on the extension of results from the theory of random walks to systems 
without translational invariance, together with the use of scaling concepts. For 
the case of an excitation which resides on one type of atom in a randomly 
mixed crystal near the percolation threshold, new power laws for the time and 
concentration dependences of the mean number of sites visited at time t of the 
kinetics of arrival at traps are obtained. Some of these results are also tested for 
the first time by numerical simulations. 
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1. INTRODUCTION 

Recently there has been a growing interest in physical processes on fractal 

structures (1-11) which are the subject of many of the papers in this 

proceedings. Only a few of these problems, however, have been related to 

physical phenomena that can be experimentally observed. 
A class of phenomena which reflects in a direct manner  the fractal 

nature of the disordered systems in which they occur is related to the 

incoherent propagation of excitations on a structures characterized by a 

fractal geometry over a range of length scales. Examples of such systems are 

polymer solutions and melts, gels, epoxy resins, and mixed crystals. Consider 

a randomly mixed AB crystal in which an optical or magnetic excitation that 
resides only on type-A atoms propagates by hopping on A clusters. If the 
concentrat ion of A atoms p is close to the percolation threshold, Pc the A 
clusters are fractal on a length scale regime bounded from above by the 
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correlation length ~oc ( p - p c ) - L  ~7,8) The natural way to probe such 
diffusion microscopically is by placing randomly a third type of molecule 
near a small fraction of the sites of the A clusters that can register the first 
arrival of the excitation at these sites. Thus, the properties of the random 
walk probed in this manner are the number of distinct sites visited and the 
probability of not having arrived at any sensor site by a given time. An 
interesting feature of the structures that appear in this type of phenomena is 
that the difference between the A and B molecules may be very slight, other 
than the preference of one of them by the excitation. This feature leads to the 
possibility of creating a truly random binary system to which a percolation 
model applies. Such processes have been studied experimentally in mixed 
organic crystals. (12'~3) It is assumed that the excitations migrate among the 
A molecules until they reach a trapping site in which they get trapped and 
then decay by fluorescence. The concentration of the traps is very low and 
they are randomly located. The kinetics of the process can be monitored by 
the time dependence of the fluorescence corresponding to decay through the 
various possible channels. 

In this paper I construct a theory for the kinetics of arrival at traps of 
an excitation diffusing on disordered systems with fractal geometry. Most of 
the main results described here appeared in a recent letter. (14) This paper 
contains an extension of the theory of Ref. 14, as well as new numerical 
results which confirm some of the theoretical predictions for the first time. 
The model used is that of a particle or excitation performing a random walk 
on a random subset of allowed sites of a regular lattice. This set has a fractal 
structure up to a length scale ~, and is characterized by an average tran- 
slational invariance over larger length scales. A small fraction of the lattice 
sites are labeled randomly as traps, and the random walk terminates upon 
arrival at such a site. The existence of two spatial size regimes will be 
reflected in two time regimes with two different trapping kinetics: (a) t < r 
where r is the mean time to diffuse a distance ~. Here the time dependence of 
quantities characterizing the random walk (RW) are determined by the 
specific fractal structure. (b) t > r. Here the time dependence of these quan- 
tities is similar to that of a RW on the embedding lattice, whereas the 
crossover time r enters these relations as a parameter. The two regimes are 
tied together by using scaling argument related to finite size scaling. The 
present discussion centers on percolation clusters, but a generally similar 
treatment can be applied to other systems, e.g., polymers, where the 
propagation of excitations along the macromolecular chain has been 
experimentally studied. ~5) 
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2. THE NUMBER OF SITES VISITED AND THE PROBABILITY OF 
SURVIVAL: GENERAL RELATIONS 

The probability that a random walker on a lattice with a concentration 
of traps c is not yet trapped at time t after starting the walk is (15'16) 

N(t) = ((1 - - c ) S ( r ~  ~ ( e - CS ' ( r~  (1) 

Here ~q(r 0, t) is the number of distinct sites visited for a particular random 
walk starting at site r 0, and the bracket denote averaging over all random 
walks and over all initial sites r 0. Since the variance of ~q for d < 2 is of the 
order of (~)2,~6) it is more convenient to treat the problem for the time 
regime where e(S)  < 1, so that 

N(t) ~ 1 - c(~q(ro, t) ) ~ e-CS~') 

S(t) = (~q(r o, t) ) (2) 

This relation between N(t) and S(t) will be shown to be relevant for most 
cases discussed in this work. Hence S(t) will be studied in detail here and in 
the following section. 

The mean number of distinct sites visited for an infinite ordered lattice 
is given by the inverse Laplace transform of S(eo) with (16'17) 

1 
S(co) - co2Po(6O ) (3) 

Here P0(~o) is the Laplace transform of the probability to return to the origin 
after time t. For a random walk on a fractal set translational invariance on 
which the derivation of Eq. (3) is based no longer exists and Eq. (3) will be 
replaced by a more general version which will now be derived. 

The mean number of distinct sites visited by a random walk starting at 
the origin r 0 is generally given by (~7) 

t 
S(ro, t )=  1 + ~ f o f ( r o , r , T ) d T  (4) 

Here f ( r0 ,  r, T) is the probability that the random walker would reach site r 
at time T for the first time. This quantity can be related to the probability of 
the random walker to be at site r at time t after originating from ro, 
P(r o, r, t), and the local probability to be at r at time t, given that it was at r 
at time t '  < t, P(r, r, t - t') by the integral relation 

t 
P(ro, r , t ) = f i ( t ) ~ ( r - - r o ) +  ~ o f ( r o , r , T ) P ( r , r , t -  T ) d T  (5) 

822/36/5-6-7 
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One can now Laplace transform this relation and solve f o r f ( r  0, r, to): 

P(ro, r, w) - ~(r - ro) 
f(ro, r, w) = (6) P(r, r, 09) 

Using this result together with the Laplace transformed version of Eq. (4) 
one obtains 

S ( t o ) = l  ( ~  P(ro'r'to) 
P(r, r, ~) >~o 

(7) 

Here P( r l ,  r2, co) is the Green's function for diffusion, and the averaging is 
over r 0. Equation (4) implies that S(w) cannot always be expressed as a 
simple extension of Eq. (3) in which P0(to) is replaced by an averaged 
(eo(ro, ro, 09)). 

3. THE NUMBER OF SITE VISITED ON PERCOLATION CLUSTERS 

For the problem of percolation clusters at p > Pc, one has two distinct 
cases according to whether the random walk starts on an infinite cluster, or 
on any allowed site. 

For the case in which the excitation starts on the percolating cluster for 
P = Pc, one can assume that after sufficiently long time, for the asymptotic 
time dependence of the probability to return to the origin does not depend on 
the particular starting point. Thus for small 09, P(r, r, to) w, g(r)tox for all r 
on the percolating cluster. The amplitude g(r) should be bounded and 
nonzero, since the infinite cluster is a connected set of points. Using this 
asymptotic from in Eq. (7), leads to a recovery of Eq. (3) for sufficiently 
small co. In order to obtain an expression for P0(to) on the percolating cluster 
the following scaling argument is used: 

Po(t, p _  pc)~ ( t )  -(d/2) 1 

-*1, x >> l 
f(x) ~ X ~, X ~ 1 

Here r is the mean time to diffuse a distance ~, r=~Z/A(p), A (p )~  
(p  _ pc ) . - 6  is the diffusion coefficient on the percolating cluster and p is the 
percolation conductivity exponent. ~18'a9) The justification for this scaling is 
twofold: 

(a) At t > r the time-dependent behavior of the random walk will be 
similar to that of a random walk on a d-dimensional lattice with a renor- 
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malized unit cell of size ~. The number of steps of the RW is given by the 
renormalized time t/r, and Po(t) is normalized by the number of available 
sites in the unit cell ~dIl(p)  = ~D. Here 1-l(p) is the probability to be on the 
infinite cluster l l ( p ) o c  ( p -  pc) ~ and D is the fractal dimensionality of 
percolating clusters, D = d - fl/v. (7b) 

(b) At t < ~ or p = Pc one expects no dependence of Po(t) on p - Pc. 
The second condition leads to a = d / 2 -  D v / ~  + 2v- - f l )  and the following 
time dependence of Po(t) is obtained: 

Po(t) ,,~ t-(a~2) 

y _  2Dr (9) 

~ + 2 v - f l  

The anomalous properties of the random walk on a percolating cluster 
reflected in this time dependence of Po(t) were first discussed in the context 
of the anomalous time dependence of the mean square displacement from the 
origin: R 2(t) OC t(d/D). (7a'8'19) A result identical to Eq. (9) was first derived by 
arguments relying on this time dependence. ~2'3's) The parameter d was 
named the fracton dimensionality of the percolating cluster in Ref. 2, where 
it has been conjectured that for all dimensionalities d =  4/3. Since d <  2 
from Eq. (3) ~ 

S(t,  Pc) oc Po( t ) -  1 ~ t(&2) (10) 

Thus on the percolating cluster at p = Pc the random walker visits on the 
average all the sites in the diffusion volume, i.e., the exploration of sites is 
compact.t2~ 

In order to obtain S(t,  p )  for p > Pc a similar scaling argument is used. 
S(t,  p )  can be expressed as follows: 

S(t ,  p )  = rrtO(t/r) 

--+1, x > l  
:(x) 

"~ X r, X "~ 1 

(11) 

This scaling relation expresses the following two conditions: (i) At long 
times t > v the number of sites visited depends on t in the same manner as it 
would for a random walk on a regular lattice. Thus for d = 3, S(t,  p )  oct. (ii) 
For t < r, S(t,  p )  oct  ~a/2) and does not depend on p -- Pc. The later condition 
leads to r = d / 2 -  1. Using Eq. (9) we get 

S(t ,  p )  = E ( p  -- pc) t  

E ( p  -- Pc) w_ (p  -- pc) u+~2-a)" 
(12) 
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In the typical excitation propagation and trapping experiment the 
excitation is created optically.t12'13) Thus the excitation is not constrained to 
start on the percolating cluster and can start on any A cluster. Next, S(t, p) 
is calculated for this case. For convenience I first consider the case p = Pc. 
The expression for S(t, p) is no given by 

S(t) = ~ p(n) S(n, t) (13) 
n 

Here p(n) is the probability that the excitation starts on a cluster of n sites 
and S(t, n) is the number of sites visited on such a cluster. Note that the 
dependence on r 0 inside the cluster is neglected, p(n) is related to the 
distribution of clusters of n sites at p = Pc, n(n) ~ n-(d/D+l) by 
p(n) ~ nn(n). ~21) A related averaging procedure was carried out in Ref. 7a for 
the mean square displacement of a random walk starting from any cluster. 
For a given t the form of S(n, t) depends on n: 

It ~/2 t ~/2 < n 
S(n, t) w_ ta/2 (14) 

n >n 

From Eqs. (12)-(14) a new power law dependence for S(t) is obtained: 

S ( t )  ~ t a/2 
(15) 

d = d(2 - d/D) 

It is interesting to note that a < d (d > D for all d), so that the exploration is 
slower than in the case where the diffusion is limited to the percolation 
cluster. Also in contrast to the fracton dimensionality of the percolating 
cluster, d is dimensionality dependent and has the mean field (d = 6) value of 
2/3. 

The form of averaging over clusters expressed by Eq. (13) is intutitively 
clear. Note that this results could also be reached by starting from Eq. (4) 
and using the following relations: (a) P(r  0, r, 03) = 0 if r 0 and r are not on 
the same cluster. (b) Y'rP(r0,  r, 03)= 1/03 where the summation is over all~ 
sites in the cluster to which r 0 belongs. (c )P(r ,  r, 03)~ m d/2-1 for 03 > n -z/d,  

and P(r, r, m) ~ 1/n for 03 < n -2/~, when r is on a cluster of n sites. (d) The 
probability that r 0 is on a cluster of n sites is proportional to p(n). 

Note that it is incorrect to use Eq. (3) with an average (Po(03)). By 
using similar derivation to that leading to Eq. (12) one obtains 
(P0(t)) ~ t (-~d/2D) for the case where the excitation starts on any cluster. 
Recent numerical results confirm this time dependence. ~22) The correct way 
to average becomes even less obvious for the general problem in which the 
diffusion rate on the B clusters is finite but very small. Then one has to 
resort to Eq. (7) as a starting point. 
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4. THE SURVIVAL OF EXCITATIONS IN THE PRESENCE OF 
TRAPS AT THE PERCOLATION THRESHOLD 

In the short time regime such that cS(t, Pc)< 1, the approximation 
expressed by Eq. (2) is valid. Thus, the number of survived excitations is 
given by Eq. (2) together with Eq. (12) for S(t, Pc). A more complicated 
situation prevails at longer times. In this case, fluctuations in if(t), which are 
strong since t7 < 2, become important. At very long times N(t) is dominated 
by the contributions of random walks characterized by unusually low values 
of S(t), and the statistics of rare events becomes relevant. For disordered 
fractals such as the percolating cluster, fluctuations of the local geometry 
from the average properties described by D and d may also become 
important. 

A lower bound for N(t) at large t can be derived by the following 
argument: The probability that a diffusing excitation has not reached the 
boundary of a region of size R by time t is given by exp[-E(R)t], where 
E(R) is the lowest eigenvalue of the diffusion equation in a region of size R. 
On a fractal with fracton dimensionality d: E(R)~  R-~2~/a). The probability 
that this region is free of traps is proportional to exp(--eR~). The lower 
bound is now given by the integral: 

~i e -E(g)t --CR~R N(t) > e (16) 

Using this result and estimating the integral by an asymptotic approximation 
leads to 

N( t ) ~ exp [-Ae (z/a + z) t(a/a + z~] (17) 

Here A is a constant of order unity. This result is an extension to a fractal 
system of recent results for the long-time behavior of N(t) on regular 
lattices. (z3) It has been proved rigorously that Eq. (17) is also an upper 
bound to N(t) for regular lattices at all dimensionalities, (24'25) so that this 
expression is exact asymptotically at long times. One certainly expects 
Eq. (17) to be an exact asymptotic result for fractal systems, where i f< 2, 
since here random walks are recurrent, and all of the sites in the diffusion 
volume are visited with probability unity. The following argument is not a 
rigorous proof but it takes into account the recurrence property: The random 
walks that dominate the quantity (exp[-cS(t)]) at very long time are those 
spending an unusually long time in visiting a relatively small number of 
distinct sites. Consider the probability distribution of S(t) conditioned on the 
random walk not having exitted a sphere of radius R in time t: 
P(S[R(t)  <R).  Owing to the recurrence property one expects this 
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probability distribution function to be peaked near R 'D in the limit of very 
long times, where R '  is smaller than but very close to R, and where R is kept 
fixed. In the limit ~(t) < t cT/z, ~(t) will be have a probability distribution: 

P(S(t)) = f P(glR(t )  < R) Pe(R(t) < R) dR ,.~ e -tg-2/~ (18) 

Here Pe(R(t)< R) is the probability that the random walk has not exitted 
the sphere of radius R, Pe oc exp[--E(R)t]. Using this result for evaluating 
the quantity (exp[ -cS( t ) ] )  one obtains in the long-time limit N(t) oc 
exp [cS(t)] ~2/2 + a), which agrees with Eq. (17). 

Combining this result with the expression for N(t) for short times leads 
to the following scaling form for N(/): 

N ( t )  ~ e -cs(~ 

l l  x ~ l  
h(x) = x_g/ta+2~, x >> 1 

(19) 

This scaling form is confirmed by numerical results reported in this 
proceeding, (26) which show that the first several moments of the distribution 
function of S(t) are proportional to the corresponding powers of S(t), and by 
the numerical results discussed below. 

5. NUMERICAL RESULTS 

In order to test these predictions simulations of diffusion on percolating 
clusters in the presence of traps were carried out. A large percolating cluster 
at p = Pc was generated on a (150) 2 square lattice and a fraction c of the 
sites were randomly designated as traps. Each random walk starts at the 
origin and terminates upon reaching a trap. At each time step the number of 
survived random walks is recorded. The total number of random walks 
samples for each concentration of traps was ~1.5 -- 2 • 10 6, while a new 
percolating cluster was generated for each group of 100 random walks. The 
large number of random walks sampled was chosen so that the number of 
survived random walks at the longest time studied was several hundreds, to 
assure satisfactory statistics in this rare events regime. The results for 
-log[N(t)/N(O)] vs. the scaling variable (e(2/at) are plotted in Fig. 1 on a 
log-log scale. The values of c represented in the plot are c = 0.02, 0.05, 
0.075, 0.1. 

The results show that the scaling relations expressed in Eq. (19) are 
obeyed. The collapse of the results for different values of c onto a single 
curve was achieved with a choice of d =  0.655. The results clearly show that 
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�9 e ~ ~176 t 

~21a t 

Fig. 1. The logarithm of -loglN(t)/N(O)] vs. the logarithm of (2/~t where ~ - l o g ( 1  -c),  
for values of trap concentration c = 0.02, 0.05, 0.075, 0.1. The results for various c values are 
all represented by the solid circles. The value of d used to obtain the scaling fit is d= 0.655. 
The slopes of the two straight lines are 0.66 and 0.4. 

N(t) undergoes a slow crossover from a exp(-ct ~/2~) behavior at short times 
to a behavior consistent with Eq. (17) and Eq. (19) at long times. These are 
the first results which demonstrate this long-time behavior numerically. 

It would be very interesting to study the survival probability at even 
longer time than studied here. Percolation clusters are disordered fractals, 
and one can expect fluctuations in their structure to come eventually into 
play. Thus, the traps reached at very long times are likely to be situated on 
difficult to reach quasi-one-dimensional regions such as long stringy chains 
branching off the backbone of the cluster. It seems plausible that at very long 
times the decay law for N(t) will be even slower than Eq. (17), reflecting the 
one-dimensional nature of the search for such out-of-the-way traps. In this 
limit a log[N(t)]oz-c~/3)t u/3) decay corresponding to Eq. (17) in one 
dimension, can be expected. 

6. ON THE PERCOLATING CLUSTER ABOVE Pc 
For the case in which the excitation starts the diffusion on the 

percolating cluster above Pc, the interplay between two characteristic times 
determines the nature of the trapping process: (1) the time to diffuse a 
distance ~, r ~  (p--pc) ("+2"-a), the upper limit of the fractal diffusion 
regime; (2) the mean time to reach a trap a t p  = Pc, r~ for which erf/2~ = 1, 
which appeared implicitly in the previous section. For times such that t > r 
the behavior of N(t) will be the similar to the ease of diffusion on a d- 
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dimensional regular lattice. If the dimensionality of the lattice is d = 3, then 
the expression N(t)ocexp[-eS( t ,p)] ,  where S(t ,p)  is given by Eq. (12), 
should be a very good approximation even at long times such that most of 
the excitations are trapped, since in d = 3 the fluctuations in S are small. 
This point is borne out by recent numerical studies of averages such as these 
appearing in Eq. (1) ~27a) as well as by an analytical estimate of the 
corrections to the approximation ( e x p ( - c S ) ) =  exp(-c(S)) .  ~27b) For r >> r s, 
i.e., very close to Pc and/or for large trap concentration the behavior of N(t) 
up to time r will be similar to that at Pc discussed in the previous two 
sections. For low trap concentrations (which corresponds to the situation in 
the experiments on mixed organic crystals) except for very close to Pc, r~ > r. 
In this case most of the trapping will occur during diffusion over distances 
greater than ~. In d = 3 the short-time regime where t < r~ (ct ~/2) < 1), and 
the nonfractal regime t > r overlap for p - Pc > 0.05 for c ~< 10 -3. Thus for 
small trap concentrations the approximation using the mean number of sites 
visited for log[N(t)/N(O)] is expected to be good for all times except very 
close to Pc. 

7. THE SURVIVAL OF EXCITATIONS STARTING ON ANY CLUSTER 

For the general case in which the excitation may start to diffuse from 
an origin located on a cluster of any size, the number of untrapped excitation 
is given by 

N(t) = ~ p(n) N(n, t) (20) 
n 

Here N(n, t) is the number of untrapped excitations on a cluster of n sites 
at time t: 

N(n, t) = e -cs~"'') (21) 

where S(n, t) is given by Eq. (14). Note that for long times S(n, t) oz n for all 
realizations of the random walk so that Eq. (21) becomes exact. For long 
times the dominant contribution to N(t) in Eq. (20) comes from finite 
clusters that are void of traps. Thus, even close to the percolation threshold, 
Eq. (20) with N(n, t) given by Eq. (14) should be a very good approximation. 

At p = Pc, in the time regime defined by et ~&2) < 1, i.e., t < rs, N(t) will 
be given by substituting S(t) of Eq. (15) in Eq. (2). At longer times N(t) will 
cross over to a time-independent limit given by 

N(t) --* 1 - -  c ( d - D ) / D ,  ct a/z >> 1 (22) 
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For p > Pc 

N(t) = H ( p ) e  -cs~''p) + [1 --/-/(p)] Ni(t, p)  

NAt, P) = ~ P(n) e-es(' 't '  (23) 
n 

Here Ni(t , p)  is the number of untrapped excitations that were initially 
created on finite clusters. The summation over n has an upper limit of ~ ,  
since the finite clusters for p > Pc are bounded from above in size by ~.(28~ 
Ni(t, p)  has several different limiting behaviors in different time and p 
regimes: 

(a) t <  r: Nc(t,p) is given by Eq. (2) with S(t) of Eq. (15) for 
ct ~a/z) < 1, and crosses over to Eq. (22) for ct (d/2) > 1, i.e., a behavior similar 
to that of N(t) at p = Pc. 

(b) t > r: Here Nt(t, p)  does not depend on t. Sufficiently close to Pc, 
so that CT ~2l/2) = C~ D > 1, N f  is again given by Eq. (22). Further away from 
Pc, for e~ D < 1, 

N : ~  1 -- c(p -- pc)"~a-zm/[1 -- H(p)]  (24) 

8. SUMMARY 

I have described results relevant for phenomena controlled by diffusion 
and trapping on fractals. The discussion centered on percolation clusters, but 
the treatment can be extended to other systems, e.g., to polymers. 

A direct relation between the number of untrapped excitations and the 
mean number of sites visited in time t on various clusters exists in most cases 
relevant to experiment. In the case where the diffusion takes place on a 
fractal up to long times, i.e., at p = Pc on the infinite cluster, this direct 
relationship is accurate only in a time regime by the end of which a fraction 
of ~0.1-0.2 of the excitations are not yet trapped. At long times the decay is 
slower than exp[--cS(t)] and is given by Eq. (19). This form of decay agrees 
very well with numerical results. 

The matching of the model to experimental systems is less certain at 
long times. In this case the hopping of the excitation between atoms that are 
not nearest neighbors might become significant. The nearest-neighbor models 
used here can be extended to include hopping to further sites. Another 
direction in which the present work can be extended is to use a more detailed 
description of the topology percolating clusters, such as taking into account 
the different local fractal dimensionalities of the backbone and of the dead 
ends, and the fluctuations in local geometry. 
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